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Introduction and Goals 
 
One of the key challenges facing IT organizations relative to application and service delivery is 
ensuring that the applications and services exhibit acceptable performance. Because of the 
importance of this challenge, an extensive set of techniques have been implemented by WAN 
Optimization Controllers (WOCs). Some of the primary roles that these techniques play are to: 
 

• Reduce the amount of data sent over the WAN; 

• Ensure that a WAN link is never idle if there is data to send; 

• Reduce the number of round trips (a.k.a., transport layer or application turns) necessary 
for a given transaction; 

• Overcome the packet delivery issues that are common in shared networks that are 
typically over-subscribed; 

• Mitigate the inefficiencies of protocols and applications; 

• Use multiple paths from origin to destination where appropriate. 
 
This white paper has two goals. One of those goals is to describe some of the factors that lead 
to poor performance. The other goal is to describe some of the optimization functionality 
provided by WAN Optimization Controllers (WOCs) that can improve application and service 
delivery. 
 

Impediments to Acceptable Performance 
 
Factors that Impact Throughput 
 
One factor that can have a negative impact on application and service delivery is packet loss.  
The effect of packet loss on TCP has been widely analyzed1. Mathis, et al. provide a simple 
formula that offers insight into the maximum TCP throughput on a single session when there is 
packet loss.  That formula is: 
 

Figure 1:  Factors that Impact Throughput 

 
 

where:  MSS =  maximum segment size 
RTT =   round trip time 
p =   packet loss rate. 

 
The preceding equation shows that throughput decreases as either the RTT or the packet loss 
rate increases.  To illustrate the impact of packet loss, assume that MSS is 1,420 bytes, RTT is 
100 ms. and p is 0.01%.   Based on the formula, the maximum throughput is 1,420 
Kbytes/second.  If, however, the loss were to increase to 0.1%, the maximum throughput drops 
to 449 Kbytes/second.  Figure 2 depicts the impact that packet loss has on the throughput of a 
single TCP stream with a maximum segment size of 1,420 bytes and varying values of RTT. 

                                                      
1 The macroscopic behavior of the TCP congestion avoidance algorithm by Mathis, Semke, Mahdavi & 
Ott in Computer Communication Review, 27(3), July 1997 



 

 
One conclusion we can draw from 
Figure 2 is: 
 

Small amounts of packet loss can 
significantly reduce the maximum 

throughput of a single TCP 
session. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For example, on a WAN link with a 1% packet loss and a round trip time of 50 ms or greater, the 
maximum throughput is roughly 3 megabits per second no matter how large the WAN link is.   
 

Quantifying Application Response Time 
 
A model is helpful to illustrate the potential performance bottlenecks in the performance of an 
application. The following model (Figure 3) is a variation of the application response time model 
created by Sevcik and Wetzel2.  Like all models, the following is only an approximation and it is 
not intended to provide results that are accurate to the millisecond level.  It is, however, 
intended to provide insight into the key factors impacting application response time.  As shown 
below, the application response time (R) is impacted by a number of factors including the 
amount of data being transmitted (Payload), the goodput which is the actual throughput on a 
WAN link, the network round trip time (RTT), the number of application turns (AppTurns), the 
number of simultaneous TCP sessions (concurrent requests), the server side delay (Cs) and the 
client side delay (Cc). 
 

 
 
 
 
 
 

                                                      
2 Why SAP Performance Needs Help 

Figure 2:  Impact of Packet Loss on Throughput 
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Figure 3:  Application Response Time Model 

 



 

 
WOC Functionality 
 
Table 1 lists some of WAN characteristics that impact application delivery and identifies WAN 
optimization techniques that a WOC can implement to mitigate the impact of those 
characteristics. 
 

Table 1:  Techniques to Improve Application Performance 

WAN Characteristics WAN Optimization Techniques 

Insufficient Bandwidth 

Data Reduction: 

• Data Compression 

• Differencing (a.k.a., de-duplication) 

• Caching 

High Latency 

Protocol Acceleration: 

• TCP 

• HTTP 

• CIFS 

• NFS 

• MAPI 
Mitigate Round-trip Time 

• Request Prediction 

• Response Spoofing 

Packet Loss 
Congestion Control 
Forward Error Correction (FEC) 
Packet Reordering 

Network Contention Quality of Service (QoS) 

 
Below is a description of some of the key techniques used by WOCs: 
  

• Caching 

A copy of information is kept locally, with the goal of either avoiding or minimizing the 
number of times that information must be accessed from a remote site. Caching can take 
multiple forms: 
 
� Byte Caching 

With byte caching the sender and the receiver maintain large disk-based caches of byte 
strings previously sent and received over the WAN link.  As data is queued for the WAN, 
it is scanned for byte strings already in the cache.  Any strings resulting in cache hits are 
replaced with a short token that refers to its cache location, allowing the receiver to 
reconstruct the file from its copy of the cache.  With byte caching, the data dictionary can 
span numerous TCP applications and information flows rather than being constrained to 
a single file or single application type. 
 

� Object Caching 

Object caching stores copies of remote application objects in a local cache server, which 
is generally on the same LAN as the requesting system.  With object caching, the cache 
server acts as a proxy for a remote application server.  For example, in Web object 



 

caching, the client browsers are configured to connect to the proxy server rather than 
directly to the remote server.  When the request for a remote object is made, the local 
cache is queried first.  If the cache contains a current version of the object, the request 
can be satisfied locally at LAN speed and with minimal latency.  Most of the latency 
involved in a cache hit results from the cache querying the remote source server to 
ensure that the cached object is up to date. 
 
If the local proxy does not contain a current version of the remote object, it must be 
fetched, cached, and then forwarded to the requester.  Either data compression or byte 
caching can potentially facilitate loading the remote object into the cache. 

 

• Compression 

The role of compression is to reduce the size of a file prior to transmitting it over a WAN.  
Compression also takes various forms. 
 
� Static Data Compression 

Static data compression algorithms find redundancy in a data stream and use encoding 
techniques to remove the redundancy and to create a smaller file.  A number of familiar 
lossless compression tools for binary data are based on Lempel-Ziv (LZ) compression.  
This includes zip, PKZIP and gzip algorithms.  

 
LZ develops a codebook or dictionary as it processes the data stream and builds short 
codes corresponding to sequences of data.  Repeated occurrences of the sequences of 
data are then replaced with the codes.  The LZ codebook is optimized for each specific 
data stream and the decoding program extracts the codebook directly from the 
compressed data stream. LZ compression can often reduce text files by as much as 60-
70%.  However, for data with many possible data values LZ generally proves to be quite 
ineffective because repeated sequences are fairly uncommon. 
 

� Differential Compression; a.k.a., Differencing or De-duplication 

Differencing algorithms are used to update files by sending only the changes that need 
to be made to convert an older version of the file to the current version.  Differencing 
algorithms partition a file into two classes of variable length byte strings: those strings 
that appear in both the new and old versions and those that are unique to the new 
version being encoded.  The latter strings comprise a delta file, which is the minimum set 
of changes that the receiver needs in order to build the updated version of the file.  

 
While differential compression is restricted to those cases where the receiver has stored 
an earlier version of the file, the degree of compression is very high.  As a result, 
differential compression can greatly reduce bandwidth requirements for functions such 
as software distribution, replication of distributed file systems, and file system backup 
and restore. 
 

� Real Time Dictionary Compression and De-Duplication 

The same basic LZ data compression algorithms discussed above and proprietary de-
duplication algorithms can also be applied to individual blocks of data rather than entire 
files.  This approach results in smaller dynamic dictionaries that can reside in memory 
rather than on disk. As a result, the processing required for compression and de-
compression introduces only a relatively small amount of delay, allowing the technique 
to be applied to real-time, streaming data.  Real time de-duplication applied to small 



 

chunks of data at high bandwidths requires a significant amount of memory and 
processing power. 

 

• Congestion Control 

The goal of congestion control is to ensure that the sending device does not transmit more 
data than the network can accommodate.  To achieve this goal, the TCP congestion control 
mechanisms are based on a parameter referred to as the congestion window.  TCP has 
multiple mechanisms to determine the congestion window.   

 

• Forward Error Correction (FEC) 

FEC is typically used at the physical layer (Layer 1) of the OSI stack.  FEC can also be 
applied at the network layer (Layer 3) whereby an extra packet is transmitted for every n 
packets sent.  This extra packet is used to recover from an error and hence avoid having to 
retransmit packets.  A subsequent subsection will discuss some of the technical challenges 
associated with data replication and will describe how FEC mitigates some of those 
challenges. 

 

• Protocol Acceleration 

Protocol acceleration refers to a class of techniques that improves application performance 
by circumventing the shortcomings of various communication protocols. Protocol 
acceleration is typically based on per-session packet processing by appliances at each end 
of the WAN link, as shown in Figure 4.  The appliances at each end of the link act as a local 
proxy for the remote system by providing local termination of the session. Therefore, the end 
systems communicate with the appliances using the native protocol, and the sessions are 
relayed between the appliances across the WAN using the accelerated version of the 
protocol or using a special protocol designed to address the WAN performance issues of the 
native protocol.  As described below, there are many forms of protocol acceleration. 

 

Figure 4:  Protocol Acceleration 
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� TCP Acceleration 

TCP can be accelerated between appliances with a variety of techniques that increase a 
session’s ability to more fully utilize link bandwidth.  Some of these techniques include 
dynamic scaling of the window size, packet aggregation, selective acknowledgement, 
and TCP Fast Start.  Increasing the window size for large transfers allows more packets 
to be sent simultaneously, thereby boosting bandwidth utilization.  With packet 
aggregation, a number of smaller packets are aggregated into a single larger packet, 
reducing the overhead associated with numerous small packets.  TCP selective 



 

acknowledgment (SACK) improves performance in the event that multiple packets are 
lost from one TCP window of data.  With SACK, the receiver tells the sender which 
packets in the window were received, allowing the sender to retransmit only the missing 
data segments instead of all segments sent since the first lost packet.  TCP slow start 
and congestion avoidance lower the data throughput drastically when loss is detected.  
TCP Fast Start remedies this by accelerating the growth of the TCP window size to 
quickly take advantage of link bandwidth. 

 
� CIFS and NFS Acceleration 

CIFS and NFS use numerous Remote Procedure Calls (RPCs) for each file sharing 
operation.  NFS and CIFS suffer from poor performance over the WAN because each 
small data block must be acknowledged before the next one is sent.  This results in an 
inefficient ping-pong effect that amplifies the effect of WAN latency.  CIFS and NFS file 
access can be greatly accelerated by using a WAFS transport protocol between the 
acceleration appliances.  With the WAFS protocol, when a remote file is accessed, the 
entire file can be moved or pre-fetched from the remote server to the local appliance’s 
cache.  This technique eliminates numerous round trips over the WAN.  As a result, it 
can appear to the user that the file server is local rather than remote.  If a file is being 
updated, CIFS and NFS acceleration can use differential compression and block level 
compression to further increase WAN efficiency. 

 
� HTTP Acceleration 

Web pages are often composed of many separate objects, each of which must be 
requested and retrieved sequentially.  Typically a browser will wait for a requested object 
to be returned before requesting the next one.  This results in the familiar ping-pong 
behavior that amplifies the effects of latency.  HTTP can be accelerated by appliances 
that use pipelining to overlap fetches of Web objects rather than fetching them 
sequentially.  In addition, the appliance can use object caching to maintain local storage 
of frequently accessed web objects.  Web accesses can be further accelerated if the 
appliance continually updates objects in the cache instead of waiting for the object to be 
requested by a local browser before checking for updates. 

 
� Microsoft Exchange Acceleration 

Most of the storage and bandwidth requirements of email programs, such as Microsoft 
Exchange, are due to the attachment of large files to mail messages.  Downloading 
email attachments from remote Microsoft Exchange Servers is slow and wasteful of 
WAN bandwidth because the same attachment may be downloaded by a large number 
of email clients on the same remote site LAN.  Microsoft Exchange acceleration can be 
accomplished with a local appliance that caches email attachments as they are 
downloaded.  This means that all subsequent downloads of the same attachment can be 
satisfied from the local application server.  If an attachment is edited locally and then 
returned to via the remote mail server, the appliances can use differential file 
compression to conserve WAN bandwidth. 
 

• Request Prediction 

By understanding the semantics of specific protocols or applications, it is often possible to 
anticipate a request a user will make in the near future.  Making this request in advance of it 
being needed eliminates virtually all of the delay when the user actually makes the request. 
 



 

Many applications or application protocols have a wide range of request types that reflect 
different user actions or use cases. It is important to understand what a vendor means when 
it says it has a certain application level optimization. For example, in the CIFS (Windows file 
sharing) protocol, the simplest interactions that can be optimized involve drag and drop. But 
many other interactions are more complex. Not all vendors support the entire range of CIFS 
optimizations.  

 

• Request Spoofing 

This refers to situations in which a client makes a request of a distant server, but the request 
is responded to locally. 

 
Conclusion and Next Steps 
 
WOCs provide a wide range of functionality that can overcome factors such as packet loss and 
high latency that cause the performance of applications to degrade. Because a WOC will 
provide varying degrees of benefit to an enterprise based on the unique characteristics of its 
environment, third party tests of these solutions are helpful, but not conclusive. In order to 
understand the performance gains that will result from deploying WOCs, network organizations 
must test those WOCs in an environment that closely reflects their production environment. 
 
 
 


